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It is shown that a linear system of n differential equations with constant coefficients, at least one of whose 

integrals is a non-degenerate quadratic form, may be reduced to a canonical system of Hamiltonian 

equations. In particular, n is even and the phase flow preserves the standard measure; if the index of the 

quadratic integral is odd, the trivial sofution is unstable, and so on. For the case n = 4 the stability 

conditions are given a geometricai form. The general results are used to investigate small oscillations of 

non-holonomic systems, and also the problem of the stability of invariant manifolds of non-linear systems 

that have Morse functions as integrals. 

1. BASIC PROPERTIES 

LET 

x’ = Ax, xER” (1-l) 

be a system of linear differential equations in n-space. The matrix A is assumed to be non-singular. 
Equivalent formulation: system (1.1) does not have linear non-constant integrals. Let us assume 
that Eqs (1.1) have an integral which is a non-degenerate quadratic form 

H = @X,x)/2, B’=B. 0.2) 

Theorem 1. 
1. n is even, 
2. f( -A) = f(A), where f(A) = 1 A - AE 1 is the characteristic polynomial of A, 
3. div(Ax) = trA = 0, 
4. if the index of the form (1.2) is odd, the equilibrium x = 0 is unstable, 
5. system (1.1) has n12 independent quadratic integrals, 
6. the equilib~um x = 0 is stable if and only if (1.1) has a positive definite quadratic integral. 
Indeed, if H is an integral of Eqs (1. l), then 

H’= (x, BAx) z 0. 

Consequently, the matrix D = BA is skew-symmetric: BA = -AfB. Since 1 D 1 f 0, it follows that IE 
is even (a skew-symmet~c matrix of odd order is always singular). Furthermore, 

f(h)= IB flA - hE IlK’ I = IBA-XBHB-" I=[A'B+XB IIB-' 1 = 

= lA’+AEI=f(-h). 

We have thus proved property 2. Since trA is the coefficient of (-h)2n-1 in the characteristic 
polynomial, property 2 implies property 3. In particular, the phase flow of system (1.1) preserves 
the standard measure in R”. Since n is even, we have f(h)-++m as A+= ~0. As the skew-symmetric 
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matrix L) is non-singular, lDl>O. Since indH is odd, it follows that j RI ~0. C’onseyuenrly, 
j’(0) = IA / = 1 B-i l/D / <O. Continuity considerations imply that f has a real positive zero and 
therefore the equilibrium x = 0 is indeed unstable. Property 4 was first pointed out in [I]; it extends 
a classical result due to Kelvin, concerning gyroscopic stabilization conditions, to the general case of 
linear systems with a quadratic integral. We know of no simple direct proofs of properties 5 and 6 crf 
the theorem; they will be proved in the next section. 

Note that property 3 also holds without the assumption that A is non-singulars Indeed, 

A =B-‘Q A’ z _.BB-‘_ 

Consequently, 

trA = trA’ = trB-‘D = trDB-’ = - trDB^’ 

which implies the desired conclusion, 

Remark. Let /A / = 0 and suppose that the characteristic polynomial f has rn zero roots with simple 
elementary divisors. Then system (1.1) will have m independent linear integrals and its restriction to the 
(n - m)-dimensional plane of zero values of these integrals will be a non-degenerate linear system. This system 
has a quadratic integral (the restriction of G) and Theorem 1 may therefore be applied. ff there is a multiple 
root zero with a non-trivial Jordan block, the equilibrium x = 0 is unstable. 

2. REDUCTION TO CANONICAL FORM 

Theorem 1 shows that linear systems with quadratic integrals have many characteristic properties 
of linear Hamiltonian systems. It turns out that this is no accident. 

Define a bilinear form 

w (X’, x”) = (fix’, XI’), L! =&4-” (2.i) 

Lemma. (0, R”) is a symplectic space. 
To prove this, we have to check that the form w is non-degenerate, skew-symmetric and closed (dw = 0). The 

first and third properties are obvious, so it remains to prove that R is a skew-symmetric matrix. Indeed, by 
Sec. 1, A’B = - BA. Consequently, 

Af~-BAB-L (,$)-I X-&L-‘&‘, 

Therefore, 

as required. 

52’=(A’)-lB=-(BA-‘B-‘), E=-BA- =--R, 

theorem 2. The linear system (1.1) is Hamiltonian; the symplectic structure is defined by the form 
(2.1) and the Hamiltonian is the integral (1.2). 

Indeed, 

w(x-, - ) = @2X’, . )=(Bx, . )=dH f .). 

We now outline a procedure for reducing system (1.1) to standard Hamiltonian form. Since the 
skew-symmetric matrix R is non-singular, there exists a non-singular matrix C such that 

r?nC = C’BA-‘C= -J, 

where 
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is a unit symplectic matrix. Set x = Cz. In the new variables z’ = C-‘ACz, H = (C’BCz, z)/2. 
Consequently, z’ = JdH/tk. 

The variables zk and z,/2+k are canonically conjugate. 
Theorem 1 is a corollary of Theorem 2 and certain well-known results of Hamiltonian mechanics. 

For example, property 3 is Liouville’s theorem on the conservation of phase volume. Property 4 
may be deduced from the fact that the Hamiltonian of a linear system can be reduced in the stable 
case to the form 

H = ‘/* I;Q(Xf + _Y:>1 Ui#O (2.2) 

The index of this quadratic form is even. The system with Hamiltonian (2.2) has a positive definite 
integral 

F = X(x? -t.$) 

which proves property 6. The proof of property 5 of Theorem 1 follows from Williamson’s results on 
the classification of normal forms of quadratic Hamiltonians [2] (see also [3, Sec. 211). 

3. THE CASE n = 4 

Let us look more closely at the simplest non-trivial case, when n = 4. If the index of the quadratic 
form His 0 or 4, the equilibrium position is stable (His a Lyapunov function). But if the index is 1 or 
3, we have unstable equilibrium (property 4 of Theorem 1). When indH = 2, the equilibrium may 
be either stable or unstable. We will now consider the question of distinguishing these cases, without 
having to evaluate the characteristic values of the matrix A. 

Let Gz be the four-dimensional Grassmann manifold of all the two-dimensional planes through 
the origin of R4 We will call a plane 71 Lagrangian if o(x’, x”) = 0 for all x’, YE =. The set of all 
Lagrangian planes forms a three-dimensional submanifold AZ C G2. 

A quadratic form H of index 2 transforms R4 into a pseudo-Euclidean space of type (2.2), often 
called an Artin space. The geometry of Artin spaces has been thoroughly studied (see, e.g. [4]). It 
turns out that through every straight line on the isotropic cone X: H(x) = 0 that contains the origin 
there pass exactly two two-dimensional planes vi and 7rz, called totally singular planes. The set of 
singular planes is the union of two connected one-dimensional components (two regular closed 
curves in G2), which we will call singular orbits. What can we say of the positions of these curves 
relative to the submanifold AZ? The answer is given by the following theorem. 

Theorem 3. The number of intersections of two singular orbits with AZ is given by Table 1. 
The plus sign signifies the existence of a Jordan block, and the minus sign its non-existence. The 

symbol ~0 means that the orbit in question lies entirely within AZ. As can be seen from Table 1, 
different types of Hamiltonians are associated with different numbers of intersections. 

TABLE 1 

No. of intersections 

No. Eigenvalues a, b E R with the first orbit with the second orbit 

1 +du, Ltib; a# b 0 0 
2 +ia, +ia; - co 0 
3 +ia, +ia; + 1 0 
4 Fa, +b; a#b 2 2 
5 +a, +a; - eo 2 
6 rta, +a; + 2 1 

7 +a, +ib 2 0 



806 v. v. Kcxn.ov 

The proof of Theorem 3 uses Williamson’s theory of normal forms 121. In case 1 the t4amilton~;~r-r 

may be reduced to the form 

w = a@: +y:j/2 --b(x: +y;)/2 

where n and h are positive real numbers. and X, and y, are conjugate canonical variables. Twit 
different families of totally singular planes exist 

I,[: a”y, = a”shtxr f b”chlx, 

b+fy, = a’ch$x, + h’sh@, 

,V,r : a’y, =&hnxl + b’chrjx, 

h”y2 = -a’chqx, -bf/?shQx2 

Here 6 and n are real parameters; as 5. q-+ +-x. these planes become 

L 1% % irn :cz y, = rb y2, 1% I2 x1 = TPx, 

N fin : @SY, = “pyz‘ &, .z Tb”& 

The singutar planes of the same family (L or N) intersect only at the origin. but planes from 
different families always intersect along an isotropic straight line. If a# h, not one of these planes is 
Lagrangian (in the standard symplectic structure); the restriction of the 1 -form y, cf,~, -t y2dxz is not a 
total differential. But if a = b (type 2), all the planes in orbit 1, are Lagrangian ~incl~ding l,, -& ), but 
there are no Lagrangian planes in orbit N. 

Now consider type 3. By a well-known result [2), the Hamiltonians of this case reduce to the form 

H= f(aL2xT 3-x:)--aZy,X2 +,y2x,, a#0 

To fix our ideas, let us take the plus sign before the parentheses. The singular orbits consist of the 
following planes 

Lt: y1 = Ex, + (Az2)-‘x,, p2 = - (2a2)-‘x, + a2&X2 

1 +a2$ I 
N,, :yl = ____ x1 t - 

2a4q a’v 
Y2, x2 =v1 

The orbit L has exactly one Lagrangian plane L, = {s, = s2 = O$, while the orbit N has none. 
Types 4-7 are considered in analogous fashion. 
As an illustrative example, we will determine the condition for gyroscopic stabilization of the equilibrium 

position of the Hamiltonian system 

x; = -WX; +a’xl, x; =wx; t vx,; a, b > 0 

This system has a quadratic integral 

H= x;’ +x;’ 4x; -b=x;. indH=2 

The equations of the totally singular planes are 

L~:x,~=o~o~~~, f hsinqx,, xi = t.a sinipx, r bcospx, 

. 
Since _Y, = yr - sxgYL _ _ r: = p, _t citx, 12. the condition for the plane !,$ to be Lagranpian i\ _ I 

w z-. i (oib)sinQ 

Consequently. if I& >a+ h. none of the singular planes is Lagrangian. Ry Theorem 3, this condition 

guarantees stability of the equilibrium position .x1 = .Y: = 0. 

Let us consider a linear system whose dynamics is described by the following second-order 
differential equations 
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X .. = Ax, xER" (4.1) 

where A is a constant matrix (in the general case A’#A). 
We know [5] that the linearized equations of motion of a non-holonomic system in a potential 

force field can be reduced to the form (4.1) near the equilibrium position. If the equilibrium is not a 

critical point of the potential energy, then A is generally not a symmetric matrix. 

Theorem 4. Equations (4.1) have n independent quadratic integrals 

(Xx ., x ‘)/2 - (Yx, x) /2 

and, if IA 1 #O, there is a non-degenerate integral (4.2) (1x1 #O, 1 Y( #O). 

(4.2) 

Corollary I. If [A 1 #O, Eqs (4.1) are Hamiltonian. 
The proof of Theorem 4 uses the following auxiliary result [6]: for any matrix A, symmetric 

matrices X and Y, 1 X) d # 0 exist such that 

XA = Y (4.3) 

In particular, any matrix may be represented (but not uniquely) as a product of two symmetric 

matrices. The set of pairs X, Y satisfying (4.3) is a linear space of dimension 

2[n(nt1)/2] --* =n 

The function (4.2) is an integral of system (4.1) if and only if Eq (4.3) is satisfied. If IA I #O, then 

I Y I # 0. In that case the quadratic form (4.2) is non-degenerate. This proves the theorem. 
It should be noted that Eqs (4.1) are equivalent to the Lagrange equations with Lagrangian 

L = T - V= (Xx., x.)/2 +(Yx,x)‘/2 

Since the “kinetic energy” T is not always positive definite, it follows that in the general case 

system (4.1) does not split into n independent oscillators. When A has n linearly independent 
vectors with real eigenvalues or the matrix Y is positive (negative) definite, the coordinates x1, . . . , 
x, are separated. 

Corollary 2. Suppose that the “potential energy” V is positive definite. Then the equilibrium 

x = 0 of system (4.1) is stable if and only if the “kinetic energy” T has a strict minimum at x’ = 0. 

As an example, consider the mechanical system with kinetic energy ‘/2(xe2 +yo2 + z’~) and force function 
z+ (ux2+ by2)/2, subject to a non-holonomic constraint z* = cx’y [7]. It is assumed that the constants u, b, c 
are not zero. This system has a whole family of equilibrium positions 

x=y=o, z = const 

The linearized equations of motion have the form (4.1) with a non-symmetric matrix A 

x” = ax + cy, y”=by 

The equilibrium is stable if a, b c 0 and a # b. 
If a # 6, Eqs (4.4) have two independent quadratic integrals 

(4.4) 

F=y.’ -by=, a= I(a-b)x’tcy’]Z-a[(a-6)xtcy]~ 

If a, b < 0, the sum of these integrals is positive definite. This result corresponds to part 6 of Theorem 1. 
If a = b, the integrals F and @ are dependent. By property 5 of Theorem 1, in this case a second independent 

quadratic integral must also exist. It will be a non-degenerate quadratic form 

UI = x‘y’--axy-cy2/2 

5. INVARIANT MANIFOLDS 

The results of Sets 1 and 2 are applicable not only to equations linearized in the neighbourhood of 
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equilibrium positions. They may be extended (mod& some additional assumptronsf to szstcrns ::I 
the neighbourhood of invariant manifolds. 

Let A4 be a compact m-dimensional invariant manifold of a dynamical system whose restriction to 
M possesses an invariant measure of density p>O. It is assumed that the system is ergodic on itl. 

The simplest example is conditionally periodic motion on an m-dimensional torus M = T”” 

vi = Cdl, . . . . Cpl;t =W,; oj = mnst 

If the frequencies w, , _ . , w, are incommensurable, this system is ergodic. 
Let x be local coordinates on M and let y be coordinates in the transversal directions. in these 

variables, the invariant manifold M is defined by the relation )’ = 0. and the diffcren~i~il equations 
are 

f(x, 0) = 0, R’ O(l.Yi’) 
65.1) 

We shall consider what is known as the reduced case, when the matrix bl is constant in suItable 
coordinates. A discussion of the reducibility of invarient tori may be found in 181. When m = 1 the 
equations are always reducible (the Lyapunov-Floquet theorem). 

Suppose that in the neighbourhood of M the system has an integral 

H (% Y) = &(x1 + ti, h (x1) + (A fx)v* VP2 + ... 

Since H l = 0, it follows that 

i5.2: 

The first relation implies that H,, is an integral of the dynamical system on M. In view of 
ergodicity, Ho = const 

We will now assume that M is non-degenerate: the covectors of the field h on M, which satisfy the 
second equation of (5.3). vanish identically. In particular, f2 is a non-singular matrix (otherwise the 
equation would have a non-trivial solution h = const). On a torus with conditionaliy periodic 
motion, non-degeneracy means that s2 has no eigenvalues of the form i(kl WI + + k,,tw,B), k, E Z. 

multiply the third equation of (5.3) by p and integrate over M. Averaging the first term gives zero, 
because 

aa 
s‘$f P CT’ u)d*x=-JMadiv(pu)d’nx=O 

Now put 

A* = J,,pAdmx 

Then (AWy, y) = 0. Consequently, the quadratic form 

(A*z, z) {.s.?l 

is an integral of the linear system 

z.=Qz (5.5) 

If A* is non-singular, we can apply the results of Sets 1 and 2. In particular the following theorem 
holds. 

Theorem 5. Suppose that the non-degenerate quadratic form (5.4) has an odd index. Then the 
invariant manifold M is unstable. 

The instability of M in the linear approximation follows from part 4 of Theorem 1: at least ant 
eigenvalue of the matrix Sz is positive. The instability of M in the strictly non-linear setting of the 
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problem is proved by using the following observation: the Lyapunov function of the linearized 
equations (5.5) can also serve as a Lyapunov function for system (5.1). 
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